Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Talanta ; 276: 126145, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38723473

ABSTRACT

Due to the common contamination of multiple mycotoxins in food, which results in stronger toxicity, it is particularly important to simultaneously test for various mycotoxins for the protection of human health. In this study, a disposable immunosensor array with low-cost was designed and fabricated using cellulose paper, polydimethylsiloxane (PDMS), and semiconducting single-walled carbon nanotubes (s-SWCNTs), which was modified with specific antibodies for mycotoxins AFB1 and FB1 detection. The strategy for fabricating the immunosensor array with two individual channels involved a two-step protocol starting with the form of two kinds of carbon films by depositing single-wall carbon nanotubes (SWCNTs) and s-SWCNTs on the cellulose paper as the conductive wire and sensing element, followed by the assembly of chemiresistive biosensor with SWCNTs strip as the wire and s-SWCNTs as the sensing element. After immobilizing AFB1-bovine serum albumin (AFB1-BSA) and FB1-bovine serum albumin (FB1-BSA) separately on the different sensing regions, the formation of mycotoxin-BSA-antibody immunocomplexes transfers to electrochemical signal, which would change with the different concentrations of free mycotoxins. Under optimal conditions, the immunosensor array achieved a limit of detection (LOD) of 0.46 pg/mL for AFB1 and 0.34 pg/mL for FB1 within a wide dynamic range from 1 pg/mL to 20 ng/mL. Furthermore, the AFB1 and FB1 spiked in the ground corn and wheat extracts were detected with satisfactory recoveries, demonstrating the excellent practicality of this established method for simultaneous detection of mycotoxins.

2.
J Environ Manage ; 355: 120469, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38432010

ABSTRACT

Crop byproducts can be supplemented in livestock feeds to improve the utilization of resources and reduce greenhouse gas (GHG) emissions. We explored the mitigation potential of GHG emissions by supplementing crop byproducts in feeds based on a typical intensive dairy farm in China. Results showed that GHG emissions associated with production of forage were significantly decreased by 25.60 % when no GHG emissions were allocated to crop byproducts, and enteric methane emission was significantly decreased by 13.46 % on the basis of CO2 eq, g/kg fat and protein corrected milk. The supplementation did not affect lactation performance, rumen microbiota and microbial enzymes at the gene level. Metabolomics analysis revealed changes in amino acid catabolism of rumen fluid, which were probably responsible for more propionate production. In conclusion, supplementing crop byproducts in feeds can be a potential strategy to reduce GHG emissions of livestock.


Subject(s)
Greenhouse Gases , Animals , Female , Greenhouse Gases/analysis , Greenhouse Gases/metabolism , Livestock , Milk/chemistry , Dietary Supplements/analysis , Animal Feed/analysis , Methane/analysis , Greenhouse Effect
3.
Talanta ; 258: 124401, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36867957

ABSTRACT

Agricultural products are frequently contaminated by mycotoxins. Multiplex, ultrasensitive, and rapid determination of mycotoxins is still a challenging problem, which is of great significance to food safety and public health. Herein, a surface-enhanced Raman scattering (SERS) based lateral flow immunoassay (LFA) for the simultaneous on-site determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA) on the same test line (T line) was developed, in this study. In practice, two kinds of Raman reporters 4-mercaptobenzoic acid (4-MBA), and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) encoded silica-encapsulated gold nanotags (Au4-MBA@SiO2 and AuDNTB@SiO2) were used as detection markers to identify the two different mycotoxins. Through systematic optimization of the experimental conditions, this biosensor has high sensitivity and multiplexing with the limits of detection (LODs) at 0.24 pg mL-1 for AFB1 and 0.37 pg mL-1 for OTA. These are far below the regulatory limits set by the European Commission, in which the minimum LODs for AFB1 and OTA are 2.0 and 3.0 µg kg-1. In the spiked experiment, the food matrix are corn, rice, and wheat, and the mean recoveries of the two mycotoxins ranged from 91.0% ± 6.3%-104.8% ± 5.6% for AFB1 and 87.0% ± 4.2%-112.0% ± 3.3% for OTA. These results demonstrate that the developed immunoassay has good stability, selectivity, and reliability, which can be used for routine monitoring of mycotoxin contamination.


Subject(s)
Metal Nanoparticles , Mycotoxins , Aflatoxin B1/analysis , Silicon Dioxide , Reproducibility of Results , Mycotoxins/analysis , Immunoassay , Gold , Limit of Detection
4.
Appl Environ Microbiol ; 89(4): e0174322, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36939340

ABSTRACT

Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.


Subject(s)
Communicable Diseases , Exosomes , Mastitis, Bovine , Staphylococcal Infections , Cattle , Animals , Female , Humans , Staphylococcus aureus/physiology , Exosomes/metabolism , Mastitis, Bovine/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Epithelial Cells/physiology , Communicable Diseases/metabolism , Communicable Diseases/veterinary , Mammary Glands, Animal/microbiology
5.
Food Funct ; 14(4): 2212-2222, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36757176

ABSTRACT

Inflammatory bowel disease (IBD) is a global health problem in which metabolite alteration plays an important pathogenic role. Bovine milk-derived extracellular vesicles (mEVs) have been shown to regulate nutrient metabolism in healthy animal models. This study investigated the effect of oral mEVs on metabolite changes in DSS-induced murine colitis. We performed metabolomic profiling on plasma samples and measured the concentrations of lipids and amino acids in both fecal samples and colonic tissues. Plasma metabolome analysis found that mEVs significantly upregulated 148 metabolite levels and downregulated 44 metabolite concentrations (VIP > 1, and p < 0.05). In the fecal samples, mEVs significantly increased the contents of acetate and butyrate and decreased the levels of tridecanoic acid (C13:0), methyl cis-10-pentadecenoate (C15:1) and cis-11-eicosenoic acid (C20:1). Moreover, the concentrations of eicosadienoic acid (C20:2), eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6) were decreased in colonic tissues with mEV supplementation. In addition, compared with the DSS group, mEVs significantly increased the content of L-arginine, decreased the level of L-valine in the fecal samples, and also decreased the levels of L-serine and L-glutamate in the colonic tissues. Collectively, our findings demonstrated that mEVs could recover the metabolic abnormalities caused by inflammation and provided novel insights into mEVs as a potential modulator for metabolites to prevent and treat IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Milk/metabolism , Inflammation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Amino Acids , Lipids , Disease Models, Animal , Dextran Sulfate/adverse effects , Mice, Inbred C57BL
6.
Animals (Basel) ; 13(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36611779

ABSTRACT

Extracellular vesicles (EVs) are membranous vesicles found in biological fluids with essential functions. However, milk-derived EV proteins from clinical mastitis (CM) and subclinical mastitis (SM) cows have yet to be studied in detail. In this study, milk-derived EVs of CM, SM, and Healthy cows were extracted using a combination of acetic acid/ultracentrifugation and density gradient ultracentrifugation and analyzed using a shotgun proteomic by data-independent acquisition mode. A total of 1253 milk exosome proteins were identified and quantified. Differently enriched (DE) proteins were identified as given a Benjamini−Hochberg adjusted p < 0.05 and a fold change of at least 2. There were 53 and 1 DE proteins in milk-derived EVs from CM and SM cows compared with healthy cows. Protein S100-A9, Protein S100-A8, Chitinase-3-like protein 1, Haptoglobin, Integrin beta-2, and Chloride intracellular channel protein 1 were more abundant in the CM group (adjusted p < 0.05). Still, their enrichment in the SM group was not significant as in the Healthy group. The enrichment of DE proteins between CM and Healthy group was consistent with elevated GO (Gene Ontology) processes­defense response, defense response to Gram-positive bacterium, granulocyte chemotaxis also contributed to Reactome pathways­neutrophil degranulation, innate immune system, and antimicrobial peptides in the CM group. These results provide essential information on mastitis-associated proteins in milk-derived EVs and indicate the biological functions of milk-derived EVs proteins require further elucidation.

7.
J Dairy Sci ; 106(1): 219-232, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36357205

ABSTRACT

The compound 3-nitrooxypropanol (3-NOP) is a promising methane inhibitor, which performs well in inhibiting methane emission and does not affect animal feed intake and digestibility. However, it causes a significant increase in hydrogen production while suppressing methane emission, resulting in a waste of feed energy. Vitamin B12 is a key factor in the propionate production pathway and thus plays an important role in regulating the hydrogen utilization pathway. In this study, the effects of 3-NOP combined with vitamin B12 supplementation on rumen fermentation and microbial compositional structure in dairy cattle were investigated by simulating rumen fermentation in vitro. Experiments were performed using a 2 × 2-factorial design: two 3-NOP levels (0 or 2 mg/g dry matter) and 2 vitamin B12 levels (0 or 2 mg/g dry matter). Three experiments were performed, each consisting of 4 treatments, 4 replicates, and 4 blanks containing only inoculum. The combined supplementation of 3-NOP and vitamin B12 reduced methane emission by 12% without affecting dry matter digestibility. The combined addition of 3-NOP and vitamin B12 significantly increased the concentration of propionate and reduced the concentration of acetate and the acetate to propionate ratio. At the bacterial level, 3-NOP increased the relative abundances of Christensenellaceae_R-7_group and Lachnospiraceae_NK3A20_group. Vitamin B12 increased the relative abundances of unclassified_f__Prevotellaceae and Prevotellaceae_UCG-003 and decreased the relative abundance of Lachnospiraceae_NK3A20_group. At the archaeal level, the combination of 3-NOP and vitamin B12 increased the relative abundances of Methanobrevibacter_ sp._ Abm4, OTU1125, and OTU95 and decreased the relative abundances of uncultured_methanogenic_archaeon_g__Methanobrevibacter, OTU1147, OTU1056, and OTU55. The results indicated that 3-NOP combined with vitamin B12 could alleviate rumen hydrogen emission and enhance the inhibition of methane emission compared with 3-NOP alone.


Subject(s)
Methane , Propionates , Female , Cattle , Animals , Fermentation , Propionates/metabolism , Lactation , Vitamin B 12/pharmacology , Diet/veterinary , Rumen/metabolism , Animal Feed/analysis , Hydrogen/metabolism , Vitamins/metabolism
8.
Sci Total Environ ; 855: 158867, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36122712

ABSTRACT

To meet the increasing demand for meat and milk, the livestock industry has to increase its production. Without improving its efficiency, increased livestock, especially ruminant animals, will worsen the environmental damage, mainly from enteric CH4 emission. Enteric CH4 emission from ruminants not only exacerbates the global greenhouse effect but also reduces feed energy efficiency for the animals. The rumen disposes of metabolic hydrogen ([H]) primarily through methanogenesis and propionate formation. Theoretically, redirecting [H] from methanogenesis to propionate formation to reduce CH4 production could be a promising method for reducing greenhouse gas emission from ruminants, and may also increase animal productivity. However, the feasibility of such a shifting has never been synthetically discussed. Thus, the objectives of this review are to provide a brief overview of the biochemical pathways for disposal of H2 in the rumen, to analyze current feeding strategies that potentially promote propionate formation and their effects on methanogenesis, and to deliberate the challenge and opportunity associated with propionate formation as a sink to store the [H] shifting from enteric CH4 inhibition.


Subject(s)
Greenhouse Gases , Methane , Animals , Methane/metabolism , Propionates/metabolism , Ruminants/physiology , Rumen , Greenhouse Gases/metabolism , Livestock , Diet
9.
Front Microbiol ; 13: 1034675, 2022.
Article in English | MEDLINE | ID: mdl-36532465

ABSTRACT

Introduction: Negative energy balance (NEB) is the pathological basis of metabolic disorders in early lactation dairy cows. Rumen-protected glucose (RPG) is a feed additive to relieve NEB of cows in early lactation. The aims of the current study were to evaluate the impact of different doses of RPG supply on fecal microbiota and metabolome in early lactation dairy cows, and their correlation with each other. Methods: A total of 24 multiparous Holstein dairy cows in early lactation were randomly assigned to one of four treatments for the first 35 days of the early lactation period, as follows: control group, a basal diet without RPG (CON); low RPG, a basal diet plus 200 g/d RPG (LRPG); medium RPG, a basal diet plus 350 g/d RPG (MRPG); or HRPG, high RPG, a basal diet plus 500 g/d RPG (HRPG). After 35 days, fecal samples were obtained from cows in all groups individually and using 16S rRNA gene sequencing to evaluate their microbiotas, while their metabolites were evaluated through metabolomics. Results: As expected, Firmicutes and Bacteroidetes were the core bacteria phyla. After RPG supplementation, there were an increase in Firmicutes and a decrease in Bacteroidetes. MRPG increased the relative abundance of cellulolytic bacteria, including Ruminococcaceae_UCG-005, Lachnospiraceae_UCG-008, Lachnospiraceae_FCS020_group, and Ruminiclostridium_9, while it decreased the relative abundance of Alistipes, Prevotellaceae_UCG-003, and Dorea. RPG supplementation could regulate the carbohydrate metabolism and amino acid metabolism pathway significantly and relieve lipolysis in dairy cows. Correlation analysis of fecal microbiome and metabolome showed that some major differential bacteria were the crucial contributors to differential metabolites. Conclusion: In conclusion, RPG supplementation can affect the fecal microbial components and microbial metabolism, and 350 g RPG might be the ideal dose as a daily supplement.

10.
Animals (Basel) ; 12(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36359144

ABSTRACT

Carbohydrates (e.g., starch and cellulose) are the main energy source in the diets of dairy cows. The ruminal digestion of starch and cellulose is achieved by microorganisms and digestive enzymes. In order to improve their digestibility, the microbes and enzymes involved in starch and cellulose degradation should be identified and their role(s) and activity known. As existing and new analytical techniques are continuously being developed, our knowledge of the amylolytic and cellulolytic microbial community in the rumen of dairy cows has been evolving rapidly. Using traditional culture-based methods, the main amylolytic and cellulolytic bacteria, fungi and protozoa in the rumen of dairy cows have been isolated. These culturable microbes have been found to only account for a small fraction of the total population of microorganisms present in the rumen. A more recent application of the culture-independent approach of metagenomics has acquired a more complete genetic structure and functional composition of the rumen microbial community. Metagenomics can be divided into functional metagenomics and sequencing-based computational metagenomics. Both approaches have been applied in determining the microbial composition and function in the rumen. With these approaches, novel microbial species as well as enzymes, especially glycosyl hydrolases, have been discovered. This review summarizes the current state of knowledge regarding the major amylolytic and cellulolytic microorganisms present in the rumen of dairy cows. The ruminal amylases and cellulases are briefly discussed. The application of metagenomics technology in investigating glycosyl hydrolases is provided and the novel enzymes are compared in terms of glycosyl hydrolase families related to amylolytic and cellulolytic activities.

11.
Front Vet Sci ; 9: 940216, 2022.
Article in English | MEDLINE | ID: mdl-35958310

ABSTRACT

Dietary supplementation with calcium propionate can effectively alleviate negative energy balance and hypocalcemia of dairy cows in early lactation. The objective of this study was to investigate the effects of calcium propionate feeding levels on the immune function, liver function, and fecal microbial composition of dairy cows in early lactation. Thirty-two multiparous Holstein cows were randomly assigned to four treatments after calving. Treatments were a basal diet plus 0, 200, 350, and 500 g calcium propionate per cow per day throughout a 5-week trial period. Cows were milked three times a day, and blood was sampled to measure immune function and liver function on d 7, 21, and 35. The rectal contents were sampled and collected on d 35 to analyze the microbial composition using 16S rRNA gene sequencing. The results indicated that increasing amounts of calcium propionate did not affected the serum concentrations of total protein, IgG, IgM, and calcium, but the concentrations of albumin and IgA changed quadratically. With the increase of calcium propionate, the activity of serum alanine transaminase and aspartate aminotransferase increased linearly, in contrast, the activity of alkaline phosphatase decreased linearly. Moreover, dietary supplementation with increasing levels of calcium propionate tended to quadratically decrease the relative abundance of Firmicutes while quadratically increased the abundance of Bacteroidetes, and consequently linearly decreased the Firmicutes/Bacteroidetes ratio in the rectal microbiota. Additionally, the supplementation of calcium propionate increased the relative abundances of Ruminococcaceae_UCG-005 and Prevotellaceae_UCG-004 linearly, and Ruminococcaceae_UCG-014 quadratically, but decreased the relative abundances of Lachnospiraceae_NK3A20_group and Family_XIII_AD3011_group quadratically. Compared with the CON group, the calcium propionate supplementation significantly decreased the relative abundance of Acetitomaculum but increased the abundances of Rikenellaceae_RC9_gut_group and Alistipes. In summary, these results suggested that the supplementation of calcium propionate to dairy cows in early lactation could beneficially alter the rectal microbiota.

12.
Metabolites ; 12(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36005569

ABSTRACT

This study aimed to investigate the effects of dietary supplementation with different levels of calcium propionate on the lactation performance, blood energy metabolite parameters, and milk metabolites of dairy cows in early lactation. Thirty-two multiparous Holstein cows were randomly divided into 4 groups, which were orally drenched with 0, 200, 350, and 500 g/d calcium propionate per cow supplemented to a basal diet for 5 weeks from calving. The milk and blood of the dairy cows were sampled and measured every week. The milk samples from the last week were used for the metabolomic analysis via liquid chromatography-mass spectrometry (LC-MS). The results showed that the calcium propionate supplementation quadratically increased the dry matter intake, energy-corrected milk yield, and 4% fat-corrected milk yield; linearly reduced the milk protein and milk lactose concentrations; and quadratically decreased the somatic cell count in the milk. With the increase in calcium propionate, the serum glucose content showed a linear increase, while the serum insulin content showed a quadratic increase. The diets supplemented with calcium propionate quadratically decreased the ß-hydroxybutyric acid and linearly decreased the non-esterified fatty acid content in the serum. The metabolomic analysis revealed that eighteen different metabolites were identified in the milk samples of the dairy cows supplemented with calcium propionate at 350 g/d, which decreased the abundance of genistein and uridine 5-monophosphate and increased the abundance of adenosine, uracil, protoporphyrin IX, and sphingomyelin (d 18:1/18:0) compared with the control group. The milk metabolic analysis indicated that the calcium propionate effectively improved the milk synthesis and alleviated the mobilization of adipose tissue and bone calcium. In summary, the calcium propionate could improve the lactation performance and energy status and promote the milk metabolic profile of dairy cows in early lactation. Calcium propionate (350 g/d) is a well-recommended supplement for dairy cows for alleviating negative energy balance and hypocalcemia in early lactation.

13.
J Inflamm Res ; 15: 4331-4343, 2022.
Article in English | MEDLINE | ID: mdl-35923910

ABSTRACT

Purpose: Streptococcus agalactiae is one of the primary pathogens responsible for subclinical mastitis, a significant economic burden for dairy farms. An essential component of the immune response to infection is ubiquitination, which plays important roles in the complex interactions between the pathogen and host. Materials and Methods: In the present study, quantitative ubiquitylomics was performed to profile changes in the global ubiquitinome of bovine mammary gland epithelial cells (BMECs) infected with S. agalactiae. Results: The most notable changes in the BMEC ubiquitinome were related to the adherens junction, ribosome, and tight junction pathways. Ubiquitination of CTNNB1, EGFR, ITGB1, CTNNA1, CTNNA2, CDH1, YES1, and SLC9A3R1 appears to be fundamental for regulating multiple cellular processes in BMECs in response to S. agalactiae infection. In addition, broad ubiquitination of various effectors and outer membrane proteins was observed. Ubiquitinated proteins in S. agalactiae-infected BMECs were associated with regulating cell junctions in the host, with potential implications for susceptibility to infection. Conclusion: The preliminary findings suggest that extensive ubiquitination of CTNNB1, CDH1 and SLC9A3R1 and proteins closely related to cell junctions might play an important role in mastitis progression in dairy cows. The results provide evidence that ubiquitin modification of certain proteins in S. agalactiae-infected BMECs could be a promising therapeutic strategy for reducing mammary gland injury and mastitis.

14.
J Dairy Sci ; 105(9): 7668-7688, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35931488

ABSTRACT

Mastitis is generally considered a local inflammatory disease caused by the invasion of exogenous pathogens and resulting in the dysbiosis of microbiota and metabolites in milk. However, the entero-mammary pathway theory may establish a possible link between some endogenous gut bacteria and the occurrence and development of mastitis. In the current study, we attempted to investigate differences in the gut microbiota profile and metabolite composition in gut and serum from healthy cows and those with subclinical mastitis and clinical mastitis. Compared with those of healthy cows, the microbial community diversities in the feces of cows with subclinical mastitis (SM) and clinical mastitis (CM) were lower. Lower abundance of Bifidobacterium, Romboutsia, Lachnospiraceae_NK3A20_group, Coprococcus, Prevotellaceae_UCG-003, Ruminococcus, and Alistipes, and higher abundance of the phylum Proteobacteria and the genera Escherichia-Shigella and Streptococcus were observed in CM cows. Klebsiella and Paeniclostridium were significantly enriched in the feces of SM cows. Several similarities were observed in feces and serum metabolites in mastitic cows. Higher levels of proinflammatory lipid products (20-trihydroxy-leukotriene-B4, 13,14-dihydro-15-keto-PGE2, and 9,10-dihydroxylinoleic acids) and lower levels of metabolites involved in secondary bile acids (deoxycholic acid, 12-ketolithocholic acid), energy (citric acid and 3-hydroxyisovalerylcarnitine), and purine metabolism (uric acid and inosine) were identified in both SM and CM cows. In addition, elevated concentrations of IL-1ß, IL-6, tumor necrosis factor-α and decreased concentrations of glutathione peroxidase and superoxide dismutase were detected in the serum of SM and CM cows. Higher serum concentrations of triglyceride and total cholesterol and lower concentrations of high-density lipoproteins in mastitic cows might be related to changes in the gut microbiota and metabolites. These findings suggested a significant difference in the profile of feces microbiota and metabolites in cows with different udder health status, which might increase our understanding of bovine mastitis.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Metabolome , Microbiota , Animals , Cattle , Cattle Diseases/metabolism , Cattle Diseases/microbiology , Feces , Female , Health Status , Mastitis, Bovine/metabolism , Mastitis, Bovine/microbiology , Milk/metabolism
15.
Nutrients ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893911

ABSTRACT

Evidence shows that effective nutritional intervention can prevent or mitigate the risk and morbidity of inflammatory bowel disease (IBD). Bovine milk extracellular vesicles (mEVs), a major bioactive constituent of milk, play an important role in maintaining intestinal health. The aims of this study were to assess the effects of mEV pre-supplementation on the colonic transcriptome and proteome in dextran sulphate sodium (DSS)-induced acute colitis, in order to understand the underlying molecular mechanisms of mEV protection against acute colitis. Our results revealed that dietary mEV supplementation alleviated the severity of acute colitis, as evidenced by the reduced disease activity index scores, histological damage, and infiltration of inflammatory cells. In addition, transcriptome profiling analysis found that oral mEVs significantly reduced the expression of pro-inflammatory cytokines (IL-1ß, IL-6, IL-17A and IL-33), chemokine ligands (CXCL1, CXCL2, CXCL3, CXCL5, CCL3 and CCL11) and chemokine receptors (CXCR2 and CCR3). Moreover, oral mEVs up-regulated 109 proteins and down-regulated 150 proteins in the DSS-induced murine model, which were involved in modulating amino acid metabolism and lipid metabolism. Collectively, this study might provide new insights for identifying potential targets for the therapeutic effects of mEVs on colitis.


Subject(s)
Colitis , Extracellular Vesicles , Animals , Colitis/metabolism , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Extracellular Vesicles/metabolism , Mice , Mice, Inbred C57BL , Milk/metabolism , Proteome , Transcriptome
16.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35887147

ABSTRACT

Hypocalcemia is caused by a sharp decline in blood calcium concentration after dairy cow calving, which can lead to various diseases or even death. It is necessary to develop an inexpensive, easy-to-operate, reliable sensor to diagnose hypocalcemia. The cellulose-paper-based microfluidic field-effect biosensor is promising for point-of-care, but it has poor mechanical strength and a short service life after exposure to an aqueous solution. Octadecyltrichlorosilane (OTS), as a popular organosilane derivative, can improve the hydrophobicity of cellulose paper to overcome the shortage of cellulose paper. In this work, OTS was used to produce the superhydrophobic cellulose paper that enhances the mechanical strength and short service life of MFB, and a microfluidic field-effect biosensor (MFB) with semiconducting single-walled carbon nanotubes (SWNTs) and DNAzyme was then developed for the Ca2+ determination. Pyrene carboxylic acid (PCA) attached to SWNTs through a non-covalent π-π stacking interaction provided a carboxyl group that can bond with an amino group of DNAzyme. Two DNAzymes with different sensitivities were designed by changing the sequence length and cleavage site, which were functionalized with SPFET/SWNTs-PCA to form Dual-MFB, decreasing the interference of impurities in cow blood. After optimizing the detecting parameters, Dual-MFB could determine the Ca2+ concentration in the range of 25 µM to 5 mM, with a detection limit of 10.7 µM. The proposed Dual-MFB was applied to measure Ca2+ concentration in cow blood, which provided a new method to diagnose hypocalcemia after dairy cow calving.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Hypocalcemia , Nanotubes, Carbon , Biosensing Techniques/methods , Carboxylic Acids/chemistry , Cellulose , Humans , Hydrophobic and Hydrophilic Interactions , Hypocalcemia/diagnosis , Microfluidics , Nanotubes, Carbon/chemistry
17.
Biosensors (Basel) ; 12(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35624632

ABSTRACT

An electrochemical biosensor for detecting Ca2+ concentration was proposed using glass carbon electrodes (GCEs) modified with nitrogen-doped graphene (NGR), gold nanoparticles (AuNPs) and DNAzyme. The resistance signal was amplified through two methods: electrochemical reduction of AuNPs on the NGR surface to increase the specific surface area of the electrode and strengthen the adsorption of DNAzyme; and increasement of the DNAzyme base sequence. The process of electrode modification was characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Experimental parameters' influence, such as the deposition time of gold nanoparticles and the detection time, were assessed by electrochemical methods. The linear ranges of the electrochemical biosensor were in the range from 5 × 10-6 to 5 × 10-5 and 5 × 10-5 to 4 × 10-4 M, with a detection limit of 3.8 × 10-6 M. The concentration of Ca2+ in the serum of dairy cows was determined by the biosensor with satisfactory results, which could be potentially used to diagnose subclinical hypocalcemia.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Graphite , Metal Nanoparticles , Biosensing Techniques/methods , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Nitrogen
18.
Nutrients ; 14(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35565775

ABSTRACT

Harboring various proteins, lipids, and RNAs, the extracellular vesicles (EVs) in milk exert vital tissue-specific immune-protective functions in neonates via these bioactive cargos. This study aims to explore the anti-inflammatory effects of bovine milk-derived EVs on a dextran sulfate sodium (DSS)-induced colitis model and to determine the underlying molecular mechanisms. Sixty C57BL/6 mice were divided into the NC group (normal control), DSS group (DSS + PBS), DSS + LOW group (DSS + 1.5 × 108 p/g EVs), DSS + MID group (DSS + 1.5 × 109 p/g EVs), and DSS + HIG group (DSS + 1.0 × 1010 p/g EVs). Histopathological sections, the gut microbiota, and intestinal tissue RNA-Seq were used to comprehensively evaluate the beneficial functions in mitigating colitis. The morphology exhibited that the milk-derived EVs contributed to the integrity of the superficial epithelial structure in the intestine. Additionally, the concentrations of IL-6 and TNF-α in the colon tissues were significantly decreased in the EVs-treated mice. The abundances of the Dubosiella, Bifidobacterium, UCG-007, Lachnoclostridium, and Lachnospiraceae genera were increased in the gut after treatment with the milk-derived EVs. Additionally, the butyrate and acetate production were enriched in feces. In addition, 1659 genes were significantly down-regulated and 1981 genes were significantly up-regulated in the EVs-treated group. Meanwhile, 82 lncRNAs and 6 circRNAs were also differentially expressed. Overall, the milk-derived EVs could attenuate colitis through optimizing gut microbiota abundance and by manipulating intestinal gene expression, implying their application potential for colitis prevention.


Subject(s)
Colitis , Extracellular Vesicles , Gastrointestinal Microbiome , Animals , Colitis/microbiology , Colon/microbiology , Dextran Sulfate/adverse effects , Dietary Supplements , Disease Models, Animal , Mice , Mice, Inbred C57BL , Milk , Transcriptome
19.
Front Microbiol ; 13: 847488, 2022.
Article in English | MEDLINE | ID: mdl-35369461

ABSTRACT

Calcium propionate is one kind of good source for preventing and treating hypocalcemia and ketosis for dairy cows in early lactation. However, little is known about the effects of different feeding levels of calcium propionate on the ruminal bacterial community of early lactation dairy cows. This study aimed to explore the effects of different calcium propionate feeding levels on the ruminal fermentation and bacterial community composition of early lactation dairy cows. Twenty-four multiparous cows were randomly allocated into control (CON), low calcium propionate (LCaP), medium calcium propionate (MCaP), and high calcium propionate (HCaP) groups with six cows per group after calving. The CON group cows were fed the normal total mixed ration (TMR), and the cows of the LCaP, MCaP, and HCaP groups were fed TMR supplemented with 200, 350, and 500 g/day calcium propionate for 35 days after calving, respectively. The rumen fermentation parameters were measured every week, and the ruminal bacterial community composition of the last week was analyzed by 16S rRNA gene sequencing. Under the same diet, the rumen pH showed no difference among the four groups, but the content of microbial crude protein (MCP) and ammonia nitrogen quadratically decreased and linearly increased with calcium propionate supplementation, respectively. The feeding of calcium propionate linearly increased the concentrations of total volatile fatty acid (VFA), acetate, propionate, butyrate, iso-valerate, and valerate in the rumen. In all the treatment groups, Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla, and Prevotella_1 and Succiniclasticum were the dominant genera in the rumen. Compared with the CON group, the addition of calcium propionate to the early lactation dairy cows quadratically improved the alpha diversity index of Chao1 estimator and observed species, but had little effect on the relative abundance of the major bacterial at phyla and genera level. These results suggested different levels of calcium propionate supplementation improved the rumen fermentation and the ruminal bacterial diversity but had little impact on the major ruminal bacterial community composition of dairy cows in early lactation.

20.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35407209

ABSTRACT

Interleukin-6 (IL-6) is generally used as a biomarker for the evaluation of inflammatory infection in humans and animals. However, there is no approach for the on-site and rapid detection of IL-6 for the monitoring of mastitis in dairy farm scenarios. A rapid and highly sensitive surface enhanced Raman scattering (SERS) immunofiltration assay (IFA) for IL-6 detection was developed in the present study. In this assay, a high sensitivity gold core silver shell SERS nanotag with Raman molecule 4-mercaptobenzoic acid (4-MBA) embedded into the gap was fabricated for labelling. Through the immuno-specific combination of the antigen and antibody, antibody conjugated SERS nanotags were captured on the test zone, which facilitated the SERS measurement. The quantitation of IL-6 was performed by the readout Raman signal in the test region. The results showed that the detection limit (LOD) of IL-6 in milk was 0.35 pg mL-1, which was far below the threshold value of 254.32 pg mL-1. The recovery of the spiking experiment was 87.0-102.7%, with coefficients of variation below 9.0% demonstrating high assay accuracy and precision. We believe the immunosensor developed in the current study could be a promising tool for the rapid assessment of mastitis by detecting milk IL-6 in dairy cows. Moreover, this versatile immunosensor could also be applied for the detection of a wide range of analytes in dairy cow healthy monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...